Preliminary communication

A-frame trinuclear complexes of platinum and palladium with a tridentate phosphine ligand Insertion of $\mathrm{d}^{10} \mathrm{Pt}(0)$ and $\mathrm{Pd}(0)$ fragments into a $\mathrm{Pt}-\mathrm{Pt} \sigma$-bond

Tomoaki Tanase ${ }^{*, 1}$, Hiroyuki Takahata, Hirokazu Ukaji, Masaru Hasegawa, Yasuhiro Yamamoto *
Department of Chemistry, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274, Japan

Received 26 June 1996; revised 7 August 1996

Abstract

Reactions of anti-[$\left.\mathrm{Pt}_{2}(\mu \text {-dpmp })_{2}(\mathrm{RNC})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ (3) (dpmp $=$ bis(diphenylphosphinomethyl)phenylphosphine) with $\left[\mathrm{M}_{3}(\mathrm{RNC})_{6}\right]$ (M $=\mathrm{Pt}, \mathrm{Pd})$ afforded trimetallic A-frame clusters, $\left[\mathrm{Pt}_{2} \mathrm{M}(\mu-\mathrm{dpmp})_{2}(\mathrm{RNC})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}(6: \mathrm{M}=\mathrm{Pt}, \mathrm{R}=\mathrm{xylyl}(\mathrm{Xyl}) ; 7: \mathrm{M}=\mathrm{Pd}, \mathrm{R}=$ mesityl (Mes)). The $\mathrm{d}^{10} \mathrm{Pt}^{0}(\mathrm{RNC})_{2}$ and $\mathrm{Pd}^{0}(\mathrm{RNC})_{2}$ fragments were shown to be inserted into the $\mathrm{Pt}-\mathrm{Pt} \boldsymbol{\sigma}$-bond of complex $\mathbf{3}$ by spectroscopic and X-ray crystallographic analyses. The uncoordinated phosphine units in 3 enable the d^{10} metal to sit in the middle position of the trinuclear array. The similar A-frame tripalladium complexes, $\left[\mathrm{Pd}_{3}(\mu \text {-dpmp })_{2}\left(\mathrm{RNC}_{2}\right)\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{8 a}: \mathrm{R}=\mathrm{Xyl} ; \mathbf{8 b}: \mathrm{R}=\mathrm{Mes})\right.$, were also prepared by the reaction of $\left[\mathrm{Pd}_{3}\left(\mathrm{RNC}_{8}\right]\left(\mathrm{PF}_{6}\right)_{2}\right.$ with dpmp.

Keywords: Platinum; Palladium; A-frame clusters; Trinuclear complexes; Triphosphine; Dpmp

1. Introduction

Since Hoffman and Hoffmann predicted the theoretical existence of A-frame trinuclear complexes on the basis of the isolobal analogy between CH_{2}, and d^{10} ML_{2} and $\mathrm{d}^{8} \mathrm{ML}_{4}$ fragments [1], several synthetic examples have been prepared through insertion of metal fragments into $\mathrm{Pd}-\mathrm{Pd}$ and $\mathrm{Pt}-\mathrm{Pt} \sigma$-bonds bridged by diphosphines such as bis(diphenylphosphino)methane (dppm) and bis(dimethylphosphino)methane (dmpm) [2-4]. We have reported the preparation of A-frame triplatinum cluster $\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{PtL}_{2}\right)(\mu \text {-dppm })_{2} \mathrm{~L}_{2}\right]^{2+}$ (1) ($\mathrm{L}=$ isocyanide) by the metal fragment $\left(\mathrm{ML}_{2}\right)$ insertion into the $\mathrm{Pt}-\mathrm{Pt}$ bond of $\left[\mathrm{Pt}_{2}(\mu \text {-dppm })_{2} \mathrm{~L}_{2}\right]^{2+}$ [5]. The heterotrimetallic A-frame clusters $\quad\left[\mathrm{Pt}_{2}(\mu\right.$ $\left.\left.\mathrm{HgCl}_{2}\right) \mathrm{Cl}_{2}(\mu-\mathrm{dppm})_{2}\right]$ [2] and $\left[\mathrm{Pt}_{2}(\mu-\right.$ $\mathrm{AuI})\left(\mathrm{C}_{2}^{\mathrm{t}} \mathrm{Bu}\right)_{2}(\mu \text {-dppm })_{2}$] [3] have been prepared by the reactions of the dppm-bridged diplatinum complexes with HgCl_{2} and Aul respectively. The reaction of

[^0]$\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mathrm{dmpm})_{2}\right]$ with $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ also led to the heterometallic cluster $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right) \mathrm{Cl}_{2}(\mu-\right.$ $\mathrm{dmpm})_{2}$] [4]. The metal fragment insertion into metalmetal bonds is an important process in small-size cluster architecture, but structurally characterized examples are, however, still limited.

Recently, we demonstrated that the reaction of $\left[\mathrm{Pt}_{2}(\mathrm{XylNC})_{6}\right]^{2+} \quad(\mathrm{Xyl}=2,6$-dimethylphenyl $)$ with bis(diphenylphosphinomethyl)phenylphosphine (dpmp) afforded a mixture of isomeric diplatinum complexes, syn- and anti- $\left[\mathrm{Pt}_{2}(\mu \text {-dpmp) })_{2}(\mathrm{XylNC})_{2}\right]^{2+}(2$ and 3), where the central P atoms of dpmp ligands bind to the same metal center in 2 (syn-type) and to the different metal centers in 3 (anti-type) (Scheme 1) [6]. Complexes 2 and $\mathbf{3}$ are fluxional in solution via the symmetrical structures $\mathbf{2}^{\prime}$ and $\mathbf{3}^{\prime}$. The syn-type dimer 2 was readily transformed, by treatment with $\mathrm{d}^{10} \mathrm{M}(\mathrm{XylNC})_{2}$ fragments, to linear homo- and heterotrinuclear clusters, linear- $\left[\mathrm{Pt}_{2} \mathrm{M}(\mu \text {-dpmp })_{2}(\mathrm{XylNC})_{2}\right]^{2+}(4: \mathrm{M}=\mathrm{Pt}, 5: \mathrm{M}$ $=\mathrm{Pd}$), where the additional metal is trapped in a terminal position of the trinuclear array (Scheme 1) [6,7]. Here, we wish to report the reaction of anti- $\left[\mathrm{Pt}_{2}(\mu-\right.$ dpmp $)_{2}\left(\mathrm{XylNC}_{2}\right]^{2+}$ (3) with $\mathrm{d}^{10} \mathrm{ML}_{2}$ fragments $(\mathbf{M}=$ $\mathrm{Pt}, \mathrm{Pd} ; \mathrm{L}=$ isocyanide , leading to formation of A -

Scheme 1.
frame-type homo- and heterotrimetallic clusters. The analogous Pd clusters are also reported.

2. Experimental results

2.1. Analytical and spectroscopic data for 6

Anal. Found: $\mathrm{C}, 45.71 ; \mathrm{H}, 3.50 ; \mathrm{N}, 1.23$. $\mathrm{C}_{82} \mathrm{H}_{76} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{P}_{8} \mathrm{Pt}_{3}$. Calc.: C, 45.80; H, 3.56; N, 1.30\%. IR (nujol) $\mathrm{cm}^{-1}: 2130(\mathrm{~N} \equiv \mathrm{C}) .{ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 1.76(\mathrm{~s}, o-\mathrm{Me}), 4.6-5.8\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 6.9-8.4(\mathrm{~m}, \mathrm{Ar})$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR (acetone- $\left.d_{6}\right): \quad \delta-34.0 \quad\left(\mathrm{~m}, \quad{ }^{1} J_{\mathrm{PrP}}=\right.$ $\left.2863 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}^{\prime}}=412 \mathrm{~Hz}, 2 \mathrm{P}\right), 1.9\left(\mathrm{~m},{ }^{1} J_{\mathrm{PtP}}=2581 \mathrm{~Hz}\right.$, $2 \mathrm{P}), 23.0\left(\mathrm{~m},{ }^{1} J_{\mathrm{PtP}}=2900 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}^{\prime}}=412 \mathrm{~Hz}, 2 \mathrm{P}\right)$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{nm}: \lambda_{\text {max }}(\log \varepsilon) 311$ (3.99). Yield 70%.

2.2. Crystal data for 6

$\mathrm{C}_{82} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{P}_{8} \mathrm{~F}_{12} \mathrm{Pt}_{3}$, monoclinic, $\mathrm{C} 2 / c$ (No. ${ }_{\mathrm{A}}$ 15), a $=15.353(2) \AA, b=23.436(3) \AA, c=22.974(8) \AA, \beta=$ $102.96(2)^{\circ}, V=8056 \AA^{3}, Z=4, \quad D_{\text {calcd }}=1.773 \mathrm{~g} \mathrm{~cm}^{-3}$, $T=23^{\circ} \mathrm{C}, R=0.035$, and $R_{u}=0.041$ for 4326 unique reflections with $I>3 \sigma(I)$. The reflection data were collected on a Rigaku AFC5S diffractometer equipped with $\mathrm{Mo} \mathrm{K} \alpha$ radiation, and the structure was solved by direct methods (MITHRIL) and refined with full-matrix least squares technique by using the TEXSAN program package.

2.3. Analytical and spectroscopic data for 7

Anal. Found: $\mathrm{C}, 48.33 ; \mathrm{H}, 3.39 ; \mathrm{N}, 1.29$. $\mathrm{C}_{84} \mathrm{H}_{80} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{P}_{8} \mathrm{PdPt}_{2}$. Calc.: $\mathrm{C}, 48.28 ; \mathrm{H}, 3.86 ; \mathrm{N}$, 1.34%. IR (nujol) $\mathrm{cm}^{-1}: 2128$ ($\mathrm{N} \equiv \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 1.83$ ($\mathrm{s}, o-\mathrm{Me}$), 2.21 (s, p-Me), 4.81, $5.12,5.68\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 6.9-8.2(\mathrm{~m}, \mathrm{Ar}) .{ }^{3} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR
(acetone- d_{6}): $\delta-29.8\left(\mathrm{~m},{ }^{1} J_{\mathrm{PtP}}=2805 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}^{\prime}}=\right.$ $426 \mathrm{~Hz}, 2 \mathrm{P}),-10.2\left(\mathrm{~m},{ }^{2} J_{\mathrm{PIP}}=341 \mathrm{~Hz}, 2 \mathrm{P}\right), 16.2(\mathrm{~m}$, $\left.{ }^{1} J_{\mathrm{PtP}}=2746 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}^{\prime}}=426 \mathrm{~Hz}, 2 \mathrm{P}\right)$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $\mathrm{nm}: \lambda_{\max }(\log \varepsilon) 396$ (3.64). Yield 31%.

2.4. Crystal data for 7

$\mathrm{C}_{84} \mathrm{H}_{80} \mathrm{~N}_{2} \mathrm{P}_{6} \mathrm{~F}_{12} \mathrm{Pt}_{2} \mathrm{Pd}$, monoclinic, $C 2 / c$ (No. 15), $a=22.209(6) \AA, \quad b=23.777(4) \AA, c=20.136(3) \AA, \beta$ $=117.44(1)^{\circ}, \quad V=9436 \AA^{3}, \quad Z=4, \quad D_{\text {calcd }}=$ $1.471 \mathrm{~g} \mathrm{~cm}^{-3}, \quad T=-147^{\circ} \mathrm{C}, \quad R=0.085$, and $R_{w}=$ 0.086 for 2783 unique reflections with $I>3 \sigma(I)$.

2.5. Analytical and spectroscopic data for $8 a$ and $8 b$

For 8a. Anal. Found: C, 52.22; H, 3.86; N, 1.40. $\mathrm{C}_{82} \mathrm{H}_{76} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{P}_{8} \mathrm{Pd}_{3}$. Calc.: C, 52.26; H, 4.06; N, 1.48\%. IR (nujol) $\mathrm{cm}^{-1}: 2139(\mathrm{~N} \equiv \mathrm{C}) .{ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 1.71(\mathrm{~s}, o-\mathrm{Me}), 4.14,4.65,5.39\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 6.9-8.0$ (m, Ar). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta-29.5\left(\mathrm{~m},{ }^{2} J_{\mathrm{PP}^{\prime}}\right.$ $=365 \mathrm{~Hz}, 2 \mathrm{P}),-25.5(\mathrm{~m}, 2 \mathrm{P}), 12.9\left(\mathrm{~m},{ }^{2} J_{\mathrm{PP}^{\prime}}=365 \mathrm{~Hz}\right.$, 2P). UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{nm}: \lambda_{\text {max }}(\log \varepsilon) 471$ (3.59). Yield 66%.

For 8b. Anal. Found: C, 52.52; H, 4.11; N, 1.43\%. $\mathrm{C}_{84} \mathrm{H}_{80} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{P}_{8} \mathrm{Pd}_{3}$. Calc.: C, 52.75; H, 4.22; N, 1.46\%. IR (nujol) $\mathrm{cm}^{-1}: 2137(\mathrm{~N} \equiv \mathrm{C}) .{ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 1.76$ (s, o-Me), 2.21 (s, p-Me), 4.50, 4.99, 5.73 (m, CH_{2}), 6.88-8.89 (m, Ar). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta-28.9\left(\mathrm{~m},{ }^{2} J_{\mathrm{PP}^{\prime}}=364 \mathrm{~Hz}, 2 \mathrm{P}\right),-26.4(\mathrm{~m}, 2 \mathrm{P}), 10.6$ $\left(\mathrm{M},{ }^{2} J_{\mathrm{PP}}{ }^{\prime}=364 \mathrm{~Hz}, 2 \mathrm{P}\right)$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{nm}: \lambda_{\text {max }}$ ($\log \varepsilon$) 470 (3.55). Yield 71%.

2.6. Crystal data for 8 a

$\mathrm{C}_{82} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{P}_{8} \mathrm{~F}_{12} \mathrm{Pd}_{3}$, monoclinic, $C 2 / c$ (No. ${ }_{\circ}$ 15), a $=15.383(2) \AA, b=23.427(5) \AA, c=23.056(7) \AA, \beta=$ $102.65(2)^{\circ}, V=8107 \AA^{3}, Z=4, D_{\text {calcd }}=1.544 \mathrm{~g} \mathrm{~cm}^{-3}$, $T=23^{\circ} \mathrm{C}, R=0.069$, and $R_{w}=0.063$ for 2489 unique reflections with $I>2.5 \sigma(I)$.

3. Discussion

The reaction of anti- $\left[\mathrm{Pt}_{2}(\mu \text {-dpmp })_{2}\left(\mathrm{RNC}_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}\right.$ (3) with $\left[\mathrm{Pt}_{3}(\mathrm{RNC})_{6}\right]$, which is a good precursor of the $\mathrm{d}^{10} \mathrm{Pt}(\mathrm{RNC})_{2}$ fragment, gave yellow clusters formulated as A-frame- $\left[\mathrm{Pt}_{3}(\mu \text {-dpmp })_{2}\left(\mathrm{RNC}_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}(6: \mathrm{R}=\right.$ Xyl, 70\%) (see Section 2.1). The IR and ${ }^{5} \mathrm{H}$ NMR spectra indicated the presence of terminal isocyanide ligands. The ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right)$ NMR spectrum of 6 exhibited three resonances at $\delta-34.0,1.9$, and 23.0 in an intensity ratio of $1: 1: 1$, all being accompanied by satellite peaks due to coupling to ${ }^{195} \mathrm{Pt}$ with ${ }^{1} J_{\mathrm{PtP}}=2581-$ 2900 Hz (Fig. 1(a)). The two resonances at $\delta-34.0$ and 23.0, in addition, are coupled to each other with ${ }^{2} J_{\mathrm{PP}^{\prime}}=412 \mathrm{~Hz}$. These spectral data suggested that the

Fig. 1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of (a) A-frame- $\left[\mathrm{Pt}_{3}(\mu\right.$ $\left.\mathrm{dpmp})_{2}(\mathrm{XyINC})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ (6) and (b) A-frame- $\left[\mathrm{Pt}_{2} \mathrm{Pd}(\mu\right.$ dpmp) $\left.)_{2}(\mathrm{MesNC})_{2}\right)\left(\mathrm{PF}_{6}\right)_{2}(7)$, measured at 100 MHz in acetone- d_{6}.
three phosphorus atoms of dpmp are in three environmentally different sites around a symmetrical triplatinum aggregation. An X-ray crystallographic analysis revealed that complex 6 comprises an A-frame triplatinum core bridged by two dpmp ligands as shown in Fig. 2 (see Section 2.2). The complex cation has a crystallographically imposed C_{2} symmetry. The core

Fig. 2. ORTEP diagram of the complex cation of A-frame- $\left[\mathrm{Pt}_{3}(\mu\right.$ dpmp $\left.)_{2}(\mathrm{XylNC})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}(6)$.
geometry is quite similar to that of $\left[\mathrm{Pt}_{3}(\mu-\right.$ $\left.\mathrm{dppm})_{2}(\mathrm{XylNC})_{4}\right]\left(\mathrm{PF}_{6}\right)_{2}(1)[5]$ except for the geometry around the central Pt atom, which is fairly distorted from a square planar structure. The dihedral angle between the planes $[\mathrm{Pt}(1) \mathrm{Pt}(2) \mathrm{Pt}(2) *]$ and $[\mathrm{Pt}(1) \mathrm{P}(3) \mathrm{P}(3) *]$ is 16°. The dpmp ligand bridges over the $\operatorname{Pt}(2)$ and $\mathrm{Pt}(2) *$ atoms with a pair of the outer and inner P atoms and between the $\operatorname{Pt}(1)$ and $\operatorname{Pt}(2)$ atoms with the other pair. The double bridging system of dpmp results in thermal stability of complex 6. The $\operatorname{Pt}(1)-\operatorname{Pt}(2)$ bond distance is $2.6309(7) \AA$ and the interatomic $\operatorname{Pt}(2) \cdots \operatorname{Pt}(2) *$ distance is $3.2333(9) \AA$. The former corresponds to a $\mathrm{Pt}-\mathrm{Pt} \sigma$-bond and the latter indicates the absence of bonding interaction between the two terminal Pt atoms. The $\mathrm{Pt}(1)-\mathrm{Pt}(2)-\operatorname{Pt}(1) *$ angle is $76.76(3)^{\circ}$.

The similar reaction of $3(\mathrm{R}=\mathrm{Mes})$ with $\left[\mathrm{Pd}_{3}(\mathrm{MesNC})_{6}\right]$ afforded a heterotrimetallic A-frame cluster, A-frame- $\left[\mathrm{Pt}_{2} \mathrm{Pd}(\mu \text {-dpmp })_{2}(\mathrm{MesNC})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ (7) in 31% yield (see Section 2.3). The IR and ${ }^{1} \mathrm{H}$ NMR spectra were similar to those of 6 , whereas a new band appeared at a longer wavelength (396 nm) than that of 6 in the electronic absorption spectrum. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showed the presence of three non-equivalent phosphorus atoms at $\delta-29.8,-10.2$, and 16.2 (Fig. 1(b)). The spectral pattern was similar to that of 6 , except for the fact that the central peak $(\delta-10.2)$ did not have satellites due to one-bond coupling to ${ }^{195} \mathrm{Pt}$. The structure of 7 was confirmed by X-ray crystallography to have a symmetrical $\mathrm{Pt}_{2} \mathrm{Pd} \mathrm{A}$-frame assembly (Fig. 3) (see Section 2.4). The Pd atom occupies the central position between the two Pt atoms. The $\mathrm{Pt}(1)_{-}^{-}$ $\operatorname{Pd}(1)$ bond length of $2.599(3) \AA$ is shorter by $0.031 \AA$ than the $\mathrm{Pt}-\mathrm{Pt}$ bond length of 6 , and the $\mathrm{Pt}(1) \cdots \mathrm{Pt}(1)$ * interatomic distance of 3.290 (3) \AA is out of bonding range. The $\mathrm{Pt}(1)-\mathrm{Pd}(1)-\mathrm{Pt}(1) *$ angles is $78.5(1)^{\circ}$. The

Fig. 3. ORTEP diagram of the complex cation of A-frame- $\left[\mathrm{Pt}_{2} \mathrm{Pd}(\mu\right.$ dpmp $)_{2}(\operatorname{MesNC})_{2}\left(\mathrm{PF}_{6}\right)_{2}(7)$.
structure of 7 suggests a formation mechanism which involves an insertion of a $\mathrm{d}^{10} \mathrm{M}(\mathrm{RNC})_{2}$ fragment into the $\mathrm{Pt}-\mathrm{Pt}$ bond in 3^{\prime} supported by the ligation of the two uncoordinated P atoms. The position of the trapped metal atom in 7 (central position) is interestingly contrasted with that in linear- $\left[\mathrm{Pt}_{2} \mathrm{Pd}(\mu\right.$ dpmp $\left.)_{2}(\mathrm{XylNC})_{2}\right]^{2+}$ (5) derived from the reaction of $\operatorname{syn}-\left[\mathrm{Pt}_{2}(\mu-\mathrm{dpmp})_{2}(\mathrm{XylNC})_{2}\right]^{2+}$ (2) with the $\operatorname{Pd}(\mathrm{XylNC})_{2}$ fragment (terminal position). The arrangement of the two free phosphorus atoms in $\mathbf{2}^{\prime}$ and 3^{\prime} may play a critical role in determining the direction of the d^{10} metal-inserted position.

The similar homotrinuclear A-frame complexes of palladium, A-frame- $\left[\mathrm{Pd}_{3}(\mu \text {-dpmp })_{2}(\mathrm{RNC})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}(8 \mathbf{a}:$ $\mathrm{R}=\mathrm{Xyl} ; \mathbf{8 b}: \mathrm{R}=\mathrm{Mes})$, were also prepared in good yields $(66-71 \%)$ by the reaction of $\left[\mathrm{Pd}_{3}(\mathrm{RNC})_{8}\right]\left(\mathrm{PF}_{6}\right)_{2}$ with two equivalents of dpmp (see Section 2.5). The structure of $8 \mathbf{a}$ was shown by X-ray crystallography (see Section 2.6) to have an isomorphous structure with that of 6. The $\mathrm{Pd}-\mathrm{Pd}$ bond length is $2.592(2) \AA$, which is slightly shorter than the $\mathrm{Pt}-\mathrm{Pd}$ distance in 7. The corresponding reaction with $\left[\mathrm{Pt}_{3}(\mathrm{RNC})_{8}\right]\left(\mathrm{PF}_{6}\right)_{2}$, notably, did not lead to the A-frame triplatinum cluster 6; instead, it resulted in an exclusive formation of the non-bridged linear triplatinum complex with chelating dpmp ligands, $\left[\mathrm{Pt}_{3}(\mathrm{dpmp})_{2}(\mathrm{RNC})_{4}\right]^{2+}$, which was confirmed by the electronic absorption spectra.

4. Conclusion

In this study, it was revealed that the diplatinum complex, anti-[$\left.\mathrm{Pt}_{2}(\mu \text {-dpmp })_{2}(\mathrm{RNC})_{2}\right]^{2+}$ (3), readily
traps a $\mathrm{d}^{10} \mathrm{Pt}$ or Pd atom into the $\mathrm{Pt}-\mathrm{Pt} \sigma$-bond to form homo- and heterotrinuclear A-frame clusters. Reactions of 3 with other d^{10} and d^{8} metal ions are now under investigation.

5. Supplementary material available

Tabulations of crystallographic data, and positional and thermal parameters for 6,7 , and $8 \mathbf{a}$ (21 pages) and an ORTEP plot of $8 \mathbf{a}$ are available from TT on request.

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education of Japan.

References

[1] D.M. Hoffman and R. Hoffmann, Inorg. Chem., 20 (1981) 3543.
[2] P.R. Sharp, Inorg. Chem., 25 (1986) 4185.
[3] L. Manojlovic-Muir, K.W. Muir, I. Treurnicht and R.J. Puddephatt, Inorg. Chem., 26 (1987) 2418.
[4] J. Ni and C.P. Kubiak, Inorg. Chim. Acta, 127 (1987) L37.
[5] (a) Y. Yamamoto, K. Takahashi and H. Yamazaki, J. Am. Chem. Soc., 108 (1986) 2458. (b) Y. Yamamoto and H. Yamazaki, Organometallics, 12 (1993) 933.
[6] Y. Yamamoto, T. Tanase, H. Ukaji, M. Hasegawa, T. Igoshi and K. Yoshimura, J. Organomet. Chem., 498 (1995) C23.
[7] T. Tanase, H. Ukaji, T. Igoshi and Y. Yamamoto, Inorg. Chem., 35 (1996) 4114.

[^0]: * Corresponding authors.
 ${ }^{1}$ Present address: Department of Chemistry, Faculty of Science, Nara Women's University, Nara 630, Japan.

